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ABSTRACT

Classification subnetwork and box regression subnetwork are
essential components in deep networks for object detection.
However, we observe a contradiction that before NMS, some
better localized detections do not correspond to higher classi-
fication confidences, and vice versa. This contradiction exist-
s because classification confidences can not fully reflect the
localization-quality (loc-quality) of each detection. In this
work, we propose the Localization-quality Estimation em-
bedded Detector abbreviated as LED, and a corresponding
detection pipeline. In this detection pipeline, we first pro-
pose an accurate loc-quality estimation method for each de-
tection, then combine the loc-quality with the corresponding
classification confidence during inference to make each de-
tection more reasonable and accurate. For efficiency, LED
is designed as an one-stage network. Extensive experiments
are conducted on Pascal VOC 2007 and KITTI car detection
datasets to demonstrate the effectiveness of LED.

Index Terms— Accurate Localization-quality Estima-
tion, Fully Convolutional Network, One-stage Detector

1. INTRODUCTION

The prevalent deep networks for object detection could be di-
vided into two main groups: two-stage methods and one-stage
methods. In two-stage methods [1, 2], the first stage aims at
generating a sparse set of proposals and the second stage aim-
s at refining the proposals. Through a sequence of advances
[2, 3, 4, 5, 6, 7], the two-stage framework reaches better detec-
tion performance. The one-stage methods [8, 9, 10, 11] per-
form classification and box regression based on densely pre-
defined anchors. The main advantage of one-stage approach-
es is high efficiency. Recently, Focal Loss [12] is proposed
to demonstrate that the one-stage framework has the poten-
tial to achieve comparable performance. In aforementioned
approaches, classification and box regression subnets are es-
sential, and final detections are obtained after classification
confidence based NMS.
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Fig. 1. Selected detections before NMS from LED. The clas-
sification confidence and the localization-quality of each de-
tection are obtained. confcls indicates the classification confi-
dence and confloc indicates the localization confidence from
localization-quality estimation. (Best view in color)

In these methods, however, we find a contradiction that
before NMS, some better localized detections do not corre-
spond to higher classification confidences and vice versa. As
shown in Fig. 1 (a), the better localized (solid green) detection
corresponds to a lower classification confidence (0.75) while
the badly localized (dashed blue) detection corresponds to a
higher classification confidence (0.9). In NMS, these better
localized detections may be discarded due to lower classifica-
tion confidences, thus reducing the detection performance.

The contradiction arises from the independence of classi-
fication subnet and box regression subnet. Generally speak-
ing, classification task calls for translation-invariant features,
that is, the shift of an object inside the image should be indis-
criminative. Meanwhile translation-sensitive features are of
vital importance to box regression task, that is, the translation
of an object inside the image region should produce mean-
ingful responses for indicating how well the detected region
is overlapped with the object. The two subnets are trained
with different loss functions, which may lead to different op-
timization directions. Classification confidences can not fully
reflect the loc-quality of each detection.

Previous works have been made to handle the above con-
tradiction. YOLO [8, 9] encodes IoU (intersection of union)
between a detection and a nearby object to indicate the objec-
tiveness of the detection then combine the objectiveness score
with classification score. YOLO obtains the objectiveness s-
core by a simple regression approach with MSE loss and oth-
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Fig. 2. Framework of LED. On each selected layer, classifi-
cation subnet (CLS), box regression subnet (LOC) and Loc-
quality Estimation subnet (LE) are constructed. Detection
components of extra layers are omitted for clear viewing.

er approaches [10, 4] could simply encode objectiveness by
regarding background as another category into classification
subnet. Dai et al.[13] present position-sensitive RoI pooling
operation to extract position-sensitive regional features, thus
easing the dilemma between translation-invariance in image
classification and translation-sensitiveness in box regression.

As shown in Fig.1, with the proposed Localization-quality
Estimation embedded Detector (LED), we not only employ
classification and box regression subnets, but also propose
an explicit loc-quality estimation method for each detection.
To connect classification subnet with box regression subnet
meanwhile utilizing their informative features, features from
classification and box regression subnets are fused as richer
features for loc-quality estimation. The estimated loc-quality
and the classification confidence of each detection are ob-
tained then combined for final inference. To demonstrate the
effectiveness of proposed components in LED, ablation stud-
ies are conducted on PASCAL VOC 2007. LED also achieves
the state-of-the-art performance on KITTI car detection task.

2. OUR APPROACH

2.1. Framework

As shown in Fig. 2, following SSD [10], we utilize the àtrous
VGG16-net [14] as our backbone and add several extra layer-
s from conv8 1 to conv11 2. Then, LED detects multi-scale
objects on selected multi-level layers respectively. On each
selected layer, anchors are uniformly distributed. Meanwhile
the classification subnet is built for classifying anchors while
the box regression subnet is built for regressing anchors to
nearby objects. The loc-quality estimation module is simul-
taneously constructed to obtain loc-quality of each detection,
based on the richly fused features from the selected layer (e.g.
con4 3) and the corresponding classification and box regres-
sion subnets. Last, loc-quality estimation based inference is
introduced to aggregate all the detection results.
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Fig. 3. Structure of the LE module. W×H×CH denotes s-
patial resolution and channels. A denotes the number of pre-
defined anchors on each location while C denotes number of
categories. For clear illustration, another two omitted pairs of
coarse-fine maps are built, in parallel with the plotted pair.

2.2. Anchors, Classification and Box Regression

Following SSD [10], anchors are empirically set on each se-
lected layer with multiple sizes based on the receptive field,
and with multiple aspect ratios. As shown in Fig. 2, 3×3
convolutional layers are built independently on each selected
layer, either for classification or for box regression. For in-
stance, on a feature map with size w×h, at each of the w×h
locations, LED predicts 4A offsets for A anchors and (C+1)A
classification scores for (C+1) categories (background is en-
coded as another category). The standard box parameteriza-
tion is employed from [10]. Softmax loss is employed as the
classification loss (Lcls) and smooth-L1 loss is employed as
the box regression loss (Lreg).

2.3. Loc-quality Estimation (LE) Module

Model. We model the loc-quality of a detection by several
spatial cues. Let Sdet, Sgt and SI denote the area of a detec-
tion, a ground truth box and the intersection of the detection
and the ground truth, respectively. Naturally, the spatial cue
IoU = SI

Sdet+Sgt−SI
(intersection of union) reflects how well

the detection overlaps the ground truth. Thus, IoU is referred
as overall-quality for localization. Furthermore, for robust
and accurate estimation, we additionally define IoD = SI

Sdet

and IoG = SI

Sgt
. IoD reflects the probability that the detec-

tion contains an object, thus named objectiveness-quality
of the detection. Meanwhile IoG reflects the spatial ratio
of an nearby object lying in the detection box, thus named
completeness-quality of the detection. The three qualities
are adopted as the loc-quality of each detection and encod-
ed into LED. For clear expression, we denote set V ={IoD,
IoG, IoU}. V is class-agnostic because the class-specific
prediction fails to reach improved performance due to limited
training data in our experiments.
Richer Features. The classification subnet and box regres-
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sion subnet are informative for loc-quality estimation, so the
features from classification subnet and box regression subnet
should be exploited. In addition, context information also
benefits loc-quality estimation. Hence, on each selected pre-
diction layer (e.g. conv4 3), features built by 3 × 3 filters on
the classification and box regression feature maps are con-
catenated with the base and context feature maps, as a richly
fused feature map. The feature fusion is shown in Fig. 3.
Note that by the feature fusion, classification subnet and box
regression subnet are connected, and both of them receive
gradients from LE module. For efficiency, dilated convolu-
tion [15, 16] is adopted to encode context information.
Prediction Module. Direct regression for V can not ob-
tain precise loc-quality of each detection in our experiments.
Thus, a coarse-to-fine (C2F) prediction module is intro-
duced. As shown in Fig. 3, on top of each fused feature map,
three pairs of coarse-fine feature maps are parallel built for
the three elements in V (the LE-coarse map is built for the
coarse procedure while the LE-fine map is constructed for the
fine procedure, one pair for one element in V ).

In the coarse procedure, prediction is regarded as a clas-
sification problem. The value range 0-1 is discretized into
four ranges {0-0.1, 0.1-0.4, 0.4-0.7, 0.7-1.0}, referred as the
background value range, the low value range, the middle val-
ue range and the high value range respectively.

In the fine procedure, four independent regressors corre-
spond to the four value ranges respectively. The regressors
regress continuous values relative to “anchors” in correspond-
ing value ranges. The “anchors” are set to {0.05, 0.25, 0.55,
0.85}, as the median of each value range. V is obtained by

v =
4∑

i=1

(probi · vali),∀v in V (1)

where v denotes IoU , IoD, or IoG. probi denotes the prob-
ability of the i-th value range and vali denotes the finely re-
gressed value of the i-th value range.
LE Loss. For C2F prediction module, LE loss LLE is com-
posed of six weighted losses from two types (the coarse pro-
cedure loss Lcoarse and the fine procedure loss Lfine). Each
element in V donates a Lcoarse and a Lfine. We adopt Soft-
max loss as Lcoarse and propose the Sharp-L2 loss as Lfine.
Compared to L2 loss, the Sharp-L2 loss up-weights the losses
assigned to badly-regressed examples, thus leading to a finer
regression procedure. The Sharp-L2 loss is defined as

Sharp−L2(x) =


1

2
· x2 , |x| < 1

1

3
· |x|3 + 1

6
, |x| ≥ 1

(2)

Each loss term in LLE is normalized with the number
of corresponding input samples. Under this normalization,
weights of the six losses are empirically set to 1.

2.4. Training

To embed LE module into our one-stage framework, we in-
troduce a three-step mechanism to optimize LED: (1) In the

first step, we train our detector without LE module, only us-
ing Lcls and Lreg . Training objective is defined as L1 =
Lcls + α · Lreg . This stage is identical to SSD [10]. (2) In
the second step, we freeze all the weights and bias except LE
module and only LLE is employed, hence L2 = LLE . (3)
Finally, we unfreeze all the weights and bias, then introduce
a fully end-to-end training step. We employ Lcls, Lreg and
LLE , hence L3 = Lcls + α · Lreg + β · LLE . Each loss term
is normalized by the number of input samples. α and β are
empirically set to 1 and 1/3, respectively.

Some training strategies are utilized. (1) We match an-
chors with ground truth boxes to obtain positive samples. (2)
Hard negative mining [17] is employed to balance negative
and positive samples for classification and box regression. In
addition, another independently modified hard example min-
ing procedure is introduced for LE module, based on the LLE ,
and we ensure that the ratio among samples from the four val-
ue ranges is around 3:1:1:1. (3) We employ data augmentation
methods such as expanding, cropping and color distortion to
improve the generalization performance of LED.
2.5. Inference
Most approaches apply NMS only by the classification confi-
dences while LED performs NMS based on both the estimat-
ed loc-quality and the classification confidence of each detec-
tion. Forwarding an image through the network, we obtain a
dense set of detections, with the classification confidence and
the loc-quality set V for each detection. Based on the defini-
tions of IoU , IoD and IoG in Section 2.3, we derive

IoU ′ =
IoD · IoG

IoD + IoG− IoD · IoG
(3)

We obtain localization confidence confloc from the direct-
ly predicted IoU in V and the derived IoU ′ in Equation 3:
confloc = λ · IoU + (1 − λ) · IoU ′. Integrating confcls
and confloc, overall confidence conf of each detection could
be simply defined as conf = confcls · confloc (denoted as
LE-Product). By Gaussian penalty function, we define conf
(denoted as LE-Gaussian) as

conf = confcls · e−
(1−confloc)2

σ (4)
where λ and σ are set to 0.6 and 1 respectively, and we find
that they work effectively and robustly in our experiments.
Finally, NMS is applied based on the conf of each detection.

3. EXPERIMENTS

Experiments are conducted on two publicly available datasets.
Ablation studies are conducted on Pascal VOC 2007 dataset.
We also conduct experiments on KITTI object detection (Car
only) dataset to report the state-of-the-art performance of
LED. All experiments are built with Caffe [19] on a single
NVIDIA Titan X (Pascal) GPU.

3.1. PASCAL VOC 2007
We compare LED with Faster R-CNN [4], SSD [10] and the
most recently proposed RON [18], and conduct ablation stud-
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Table 1. PASCAL VOC 2007 test results. All methods are based on pre-trained VGG16, and trained with VOC 2007 trainval
and VOC 2012 trainval. ⋆ indicates our own reproducing of SSD300, slightly higher than the original one [10].

Approach FPS mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster R-CNN [4] – 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
RON384 [18] – 75.4 78.0 82.4 76.7 67.1 56.9 85.3 84.3 86.1 55.5 80.6 71.4 84.7 84.8 82.4 76.2 47.9 75.3 74.1 83.8 74.5

SSD300⋆ 94 77.6 79.2 84.0 76.1 69.5 50.6 86.9 85.9 88.7 60.4 81.3 76.8 86.2 87.4 83.6 79.4 52.9 79.2 79.6 87.6 77.1
LED300 65 78.7 82.7 86.5 76.9 71.7 51.7 87.1 88.0 89.9 60.8 84.0 74.9 88.2 87.9 85.1 81.3 52.5 79.5 80.8 87.6 76.8

Table 2. Ablation studies on Pascal VOC 2007.
√

denotes
the setting of corresponding column is employed. Otherwise,
base prediction feature map instead of richer features (RF),
direct regression instead of coarse-to-fine (C2F), L2 loss in-
stead of Sharp-L2 loss, LE-Product instead of LE-Gaussian.

Model RF C2F Sharp-L2 LE-Gaussian mAP

LED300

77.4√
77.9√ √
78.3√ √ √
78.5√ √ √ √
78.7

SSD300240k 77.7

ies. Based on pre-trained VGG16 networks, all methods are
trained on VOC 2007 trainval and VOC 2012 trainval then
tested on VOC 2007 test set. We adopt the standard evalua-
tion metric (mAP) with IoU=0.5, as described in [20].
Implementation Details: For fair comparison, LED shares
the same settings for anchors, classification subnets and box
regression subnets, as described in SSD [10]. Input size is
set to 300×300 for LED300 and SSD300. Batch size is set
to 28. LED is trained by SGD with weight decay of 0.0005
and momentum of 0.9. In the first stage, LED is trained with
a learning rate of 10−3 for the first 80k iterations, then 10−4

for 20k iterations and 10−5 for another 20k iterations. In the
second stage, learning rate is set to 10−4 for 20k iterations
then 10−5 for 20k iterations. In the third stage, learning rate
is set to 10−4 for 40k iterations then 10−5 for 40k iterations.
Results and Analysis: In Table 1, LED outperforms SS-
D300 by 1.1% mAP. LED reaches the best performance a-
mong these approaches. As shown in Table 2, the loc-quality
estimation related components in LED help to improve detec-
tion performance. Considering the three-step training phase
of LED, for fair comparison, we also fine tune SSD300 mod-
el for more iterations and denote it as SSD300240k in Table
2. The performance of SSD300240k further verifies that the
gains of LED come from the designs described in Section 2.

In Table 1, we find that LED does well in most cases while
hurting the performance for inaccurately annotated categories
like dining table. LED also fails to reach high mAP on very
small objects like bottles, which may be caused by the weakly
semantic features of conv4 3. Last, Inference speed will drop
a little due to additionally added structures.

3.2. KITTI Car Detection

We also conduct experiments on the challenging KITTI [21]
car detection task. Each ground truth is annotated with sever-

Table 3. KITTI car detection results on validation subset.
All methods share the same dataset splits. ⋆ indicates that the
detection results and inference time are obtained from corre-
sponding references, otherwise from our experiments. Time
indicates mean inference time for one image. Mod denotes
moderate difficulty and is the metric for ranking.

Approach Time Easy Mod Hard
3DVP [24]⋆ 40s 80.48 68.05 57.20
Faster R-CNN [4]⋆ 2s 82.91 77.83 66.25
SubCNN [22]⋆ 2s 95.77 86.64 74.07
DeepMANTA (GoogLenet) [23]⋆ 0.7s 97.90 91.01 83.14
DeepMANTA (VGG16) [23]⋆ 2s 97.45 91.47 81.79
SSD 0.07s 96.50 88.11 77.52
LED (single) 0.11s 97.31 91.32 81.23
LED (ensemble) 0.33s 97.51 91.93 83.11

al attributes indicating difficulties (Easy, Moderate and Hard).
IoU threshold is set to 0.7 for Car in evaluation. All methods
are ranked based on the moderately difficult results.
Implementation Details: Since the annotations of the KITTI
test set are not available, training images are split into train
subset (3762 images) and validation subset (3799 images) as
described in [22, 23]. Input size is set to 1920×576. Simi-
lar to [9], by K-means clustering parameters on train subset,
we set aspect ratios of anchors as {1.0, 1.5, 1.8, 2.2, 2.7}. As
KITTI is more challenging, we train LED with a learning rate
of 10−5 for 30k iterations then 10−6 for another 30k itera-
tions in all the three training steps. Our implemented SSD
and LED share the same settings except the LE module.
Experimental Results: Table 3 shows that LED reaches the
state-of-the-art performance with a fast inference speed, out-
performing our implemented SSD by more than 3% mAP.
Compared to [23] and [22], LED is less time consuming

due to the efficient one-stage framework. Last, single mod-
el of LED reaches comparable performance as [23], and LED
could achieve high mAP of 91.93% with the ensemble results
from multi-scale and flipping testing methods [25].

4. CONCLUSION

To conclude, we propose an accurate loc-quality estimation
method within an one-stage framework. The proposed loc-
quality estimation module helps to obtain the accurate esti-
mated loc-quality of each detection. Then in the LE-based
inference phase, the loc-quality and the classification confi-
dence of each detection are combined to make each detection
more reasonable, thus boosting the detection performance.
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